1,301 research outputs found

    Criticality Analysis for Maintenance Purposes: A Study for Complex In‐service Engineering Assets

    Get PDF
    The purpose of this paper is to establish a basis for a criticality analysis, considered here as a prerequisite, a first required step to review the current maintenance programs, of complex in‐service engineering assets. Review is understood as a reality check, a testing of whether the current maintenance activities are well aligned to actual business objectives and needs. This paper describes an efficient and rational working process and a model resulting in a hierarchy of assets, based on risk analysis and cost–benefit principles, which will be ranked according to their importance for the business to meet specific goals. Starting from a multicriteria analysis, the proposed model converts relevant criteria impacting equipment criticality into a single score presenting the criticality level. Although detailed implementation of techniques like Root Cause Failure Analysis and Reliability Centered Maintenance will be recommended for further optimization of the maintenance activities, the reasons why criticality analysis deserves the attention of engineers and maintenance and reliability managers are precisely explained here. A case study is presented to help the reader understand the process and to operationalize the mode

    Criticality analysis for improving maintenance, felling and pruning cycles in power lines

    Get PDF
    16th IFAC Symposium on Information Control Problems in Manufacturing INCOM 2018 Bergamo, Italy, 11–13 June 2018. Edited by Marco Macchi, László Monostori, Roberto PintoThis paper deals with the process of criticality analysis in overhead power lines, as a tool to improve maintenance, felling & pruning programs. Felling & pruning activities are tasks that utility companies must accomplish to respect the servitudes of the overhead lines, concerned with distances to vegetation, buildings, infrastructures and other networks crossings. Conceptually, these power lines servitudes can be considered as failure modes of the maintainable items under our analysis (power line spans), and the criticality analysis methodology developed, will therefore help to optimize actions to avoid these as other failure modes of the line maintainable items. The approach is interesting, but another relevant contribution of the paper is the process followed for the automation of the analysis. Automation is possible by utilizing existing companies IT systems and databases. The paper explains how to use data located in Enterprise Assets Management Systems, GIS and Dispatching systems for a fast, reliable, objective and dynamic criticality analysis. Promising results are included and also discussions about how this technique may result in important implications for this type of businesse

    A Joint Approach for Low-Complexity Channel Estimation in 5G Massive MIMO Systems

    Full text link
    [EN] Traditional Minimum Mean Square Error (MMSE) detection is widely used in wireless communications, however, it introduces matrix inversion and has a higher computational complexity. For massive Multiple-input Multiple-output (MIMO) systems, this detection complexity is very high due to its huge channel matrix dimension. Therefore, low-complexity detection technology has become a hot topic in the industry. Aiming at the problem of high computational complexity of the massive MIMO channel estimation, this paper presents a low-complexity algorithm for efficient channel estimation. The proposed algorithm is based on joint Singular Value Decomposition (SVD) and Iterative Least Square with Projection (SVD-ILSP) which overcomes the drawback of finite sample data assumption of the covariance matrix in the existing SVD-based semi-blind channel estimation scheme. Simulation results show that the proposed scheme can effectively reduce the deviation, improve the channel estimation accuracy, mitigate the impact of pilot contamination and obtain accurate CSI with low overhead and computational complexity.This research was funded by Ministerio de Economia, Industria y Competitividad, Gobierno de Espana grant number BIA2017-87573-C2-2-P.Bangash, K.; Khan, I.; Lloret, J.; León Fernández, A. (2018). A Joint Approach for Low-Complexity Channel Estimation in 5G Massive MIMO Systems. Electronics. 7(10). https://doi.org/10.3390/electronics7100218S710Gao, Z., Dai, L., Lu, Z., Yuen, C., & Wang, Z. (2014). Super-Resolution Sparse MIMO-OFDM Channel Estimation Based on Spatial and Temporal Correlations. IEEE Communications Letters, 18(7), 1266-1269. doi:10.1109/lcomm.2014.2325027Biswas, S., Masouros, C., & Ratnarajah, T. (2016). Performance Analysis of Large Multiuser MIMO Systems With Space-Constrained 2-D Antenna Arrays. IEEE Transactions on Wireless Communications, 15(5), 3492-3505. doi:10.1109/twc.2016.2522419Khan, I., Zafar, M., Jan, M., Lloret, J., Basheri, M., & Singh, D. (2018). Spectral and Energy Efficient Low-Overhead Uplink and Downlink Channel Estimation for 5G Massive MIMO Systems. Entropy, 20(2), 92. doi:10.3390/e20020092Khan, I., & Singh, D. (2018). Efficient compressive sensing based sparse channel estimation for 5G massive MIMO systems. AEU - International Journal of Electronics and Communications, 89, 181-190. doi:10.1016/j.aeue.2018.03.038Khan, I., Singh, M., & Singh, D. (2018). Compressive Sensing-based Sparsity Adaptive Channel Estimation for 5G Massive MIMO Systems. Applied Sciences, 8(5), 754. doi:10.3390/app8050754Arshad, M., Khan, I., Lloret, J., & Bosch, I. (2018). A Novel Multi-User Codebook Design for 5G in 3D-MIMO Heterogeneous Networks. Electronics, 7(8), 144. doi:10.3390/electronics7080144Shahjehan, W., Shah, S., Lloret, J., & Bosch, I. (2018). Joint Interference and Phase Alignment among Data Streams in Multicell MIMO Broadcasting. Applied Sciences, 8(8), 1237. doi:10.3390/app8081237Jose, J., Ashikhmin, A., Marzetta, T. L., & Vishwanath, S. (2011). Pilot Contamination and Precoding in Multi-Cell TDD Systems. IEEE Transactions on Wireless Communications, 10(8), 2640-2651. doi:10.1109/twc.2011.060711.101155Jose, J., Ashikhmin, A., Marzetta, T. L., & Vishwanath, S. (2009). Pilot contamination problem in multi-cell TDD systems. 2009 IEEE International Symposium on Information Theory. doi:10.1109/isit.2009.5205814Jose, J., Ashikhmin, A., Whiting, P., & Vishwanath, S. (2011). Channel Estimation and Linear Precoding in Multiuser Multiple-Antenna TDD Systems. IEEE Transactions on Vehicular Technology, 60(5), 2102-2116. doi:10.1109/tvt.2011.2146797Marzetta, T. L. (2010). Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas. IEEE Transactions on Wireless Communications, 9(11), 3590-3600. doi:10.1109/twc.2010.092810.091092Rusek, F., Persson, D., Buon Kiong Lau, Larsson, E. G., Marzetta, T. L., & Tufvesson, F. (2013). Scaling Up MIMO: Opportunities and Challenges with Very Large Arrays. IEEE Signal Processing Magazine, 30(1), 40-60. doi:10.1109/msp.2011.2178495Chang, Z., Wang, Z., Guo, X., Han, Z., & Ristaniemi, T. (2017). Energy-Efficient Resource Allocation for Wireless Powered Massive MIMO System With Imperfect CSI. IEEE Transactions on Green Communications and Networking, 1(2), 121-130. doi:10.1109/tgcn.2017.2696161Prasad, K. N. R. S. V., Hossain, E., & Bhargava, V. K. (2017). Energy Efficiency in Massive MIMO-Based 5G Networks: Opportunities and Challenges. IEEE Wireless Communications, 24(3), 86-94. doi:10.1109/mwc.2016.1500374wcFodor, G., Rajatheva, N., Zirwas, W., Thiele, L., Kurras, M., Guo, K., … De Carvalho, E. (2017). An Overview of Massive MIMO Technology Components in METIS. IEEE Communications Magazine, 55(6), 155-161. doi:10.1109/mcom.2017.1600802Lu, L., Li, G. Y., Swindlehurst, A. L., Ashikhmin, A., & Zhang, R. (2014). An Overview of Massive MIMO: Benefits and Challenges. IEEE Journal of Selected Topics in Signal Processing, 8(5), 742-758. doi:10.1109/jstsp.2014.2317671Larsson, E. G., Edfors, O., Tufvesson, F., & Marzetta, T. L. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186-195. doi:10.1109/mcom.2014.6736761Yi Xu, Guosen Yue, & Shiwen Mao. (2014). User Grouping for Massive MIMO in FDD Systems: New Design Methods and Analysis. IEEE Access, 2, 947-959. doi:10.1109/access.2014.2353297Duly, A. J., Kim, T., Love, D. J., & Krogmeier, J. V. (2014). Closed-Loop Beam Alignment for Massive MIMO Channel Estimation. IEEE Communications Letters, 18(8), 1439-1442. doi:10.1109/lcomm.2014.2316157Choi, J., Love, D. J., & Bidigare, P. (2014). Downlink Training Techniques for FDD Massive MIMO Systems: Open-Loop and Closed-Loop Training With Memory. IEEE Journal of Selected Topics in Signal Processing, 8(5), 802-814. doi:10.1109/jstsp.2014.2313020Noh, S., Zoltowski, M. D., & Love, D. J. (2016). Training Sequence Design for Feedback Assisted Hybrid Beamforming in Massive MIMO Systems. IEEE Transactions on Communications, 64(1), 187-200. doi:10.1109/tcomm.2015.2498184Jiang, Z., Molisch, A. F., Caire, G., & Niu, Z. (2015). Achievable Rates of FDD Massive MIMO Systems With Spatial Channel Correlation. IEEE Transactions on Wireless Communications, 14(5), 2868-2882. doi:10.1109/twc.2015.2396058Adhikary, A., Junyoung Nam, Jae-Young Ahn, & Caire, G. (2013). Joint Spatial Division and Multiplexing—The Large-Scale Array Regime. IEEE Transactions on Information Theory, 59(10), 6441-6463. doi:10.1109/tit.2013.2269476Talwar, S., Viberg, M., & Paulraj, A. (1996). Blind separation of synchronous co-channel digital signals using an antenna array. I. Algorithms. IEEE Transactions on Signal Processing, 44(5), 1184-1197. doi:10.1109/78.502331Comon, P., & Golub, G. H. (1990). Tracking a few extreme singular values and vectors in signal processing. Proceedings of the IEEE, 78(8), 1327-1343. doi:10.1109/5.5832

    Strategic view of an assets health index for making long-term decisions in different industries

    Get PDF
    Libro en Open AccessAn Asset Health Index (AHI) is a tool that processes data about asset’s condition. That index is intended to explore if alterations can be generated in the health of the asset along its life cycle. These data can be obtained during the asset’s operation, but they can also come from other information sources such as geographical information systems, supplier’s reliability records, relevant external agent’s records, etc. The tool (AHI) provides an objective point of view in order to justify, for instance, the extension of an asset useful life, or in order to identify which assets from a fleet are candidates for an early replacement as a consequence of a premature aging. This paper develops a model applicable to different classes of equipment and industrial sectors. A review of the main cases where the asset health index has been applied is included. Likewise, advantages and disadvantages in the application of this kind of tools are revealed, providing a guide for a research line related to the general application of this tool

    Gender diversity on boards of directors and remuneration committees: The influence on listed companies in Spain

    Get PDF
    Women have traditionally been underrepresented on boards of companies, but after some social and legal pressure their presence has been increased during recent years. This paper examines the relation of the presence of female directors both at board meetings and at audit and remuneration committees, with CEO pay and the shareholders' consultative vote on managerial remuneration plans (“say on pay”). Using a large sample of Spanish firms listed between 2011 and 2015, our study reveals that firms with female representation on their remuneration committee, display lower levels of CEO pay and CEO pay growth. We also obtain evidence that this effect is attributable to the proprietary female directors. Additionally, from the “say on pay” perspective, female membership of the remuneration committee is associated with a lower number of votes in terms of director remuneration reports and related policies. Overall, our results indicate that female directors on the remuneration committee contribute to a moderation of executive remuneration growth and are consequently perceived by shareholders as valuable resources in the design of executive remuneration plans. This confirms the influence of the minority group, females, in the sustainable progress of these companies. Our results support the presence of female directors not only as a social measure or tokenism, but also as a contribution to good governance practice

    An Efficient Approach for Coordination of Dual-Channel Closed-Loop Supply Chain Management

    Full text link
    [EN] In this paper, a closed-loop supply chain composed of dual-channel retailers and manufacturers, a dynamic game model under the direct recovery, and an entrusted third-party recycling mode of the manufacturer is constructed. The impact of horizontal fairness concern behavior is introduced on the pricing strategies and utility of decision makers under different recycling models. The equilibrium strategy at fair neutrality is used as a reference to compare offline retails sales. Research shows that in the closed-loop supply chain of dual-channel sales, whether in the case of fair neutrality or horizontal fairness concerns, the manufacturer's direct recycling model is superior to the entrusted third-party recycling, and the third-party recycling model is transferred by the manufacturer. In the direct recycling model, the horizontal fairness concern of offline retailers makes two retailers in the positive supply chain compete to lower the retail price in order to increase market share. Manufacturers will lower the wholesale price to encourage competition, and the price will be the horizontal fairness concern coefficient, which is negatively correlated. In the reverse supply chain, manufacturers increase the recycling rate of used products. This pricing strategy increases the utility of manufacturers and the entire supply chain system compared to fair neutral conditions, while two retailers receive diminished returns. Manufacturers, as channel managers to encourage retailers to compete for price cuts, can be coordinated through a three-way revenue sharing contract to achieve Pareto optimality.This research was funded by Ministerio de Economia, Industria y Competitividad, Gobierno de Espana grant number BIA2017-87573-C2-2-P.Arshad, M.; Khalid, QS.; Lloret, J.; León Fernández, A. (2018). An Efficient Approach for Coordination of Dual-Channel Closed-Loop Supply Chain Management. Sustainability. 10(10). https://doi.org/10.3390/su10103433S101

    Dataset for proteomic analysis of Chlorella sorokiniana cells under cadmium stress

    Get PDF
    Cadmium is one of the most hazardous heavy metal for aquatic environments and one of the most toxic contaminants for phytoplankton. This work provides the dataset associated with the research publication “Effect of cadmium in the microalga Chlorella sorokiniana : a proteomic study” [1] . This dataset describes a proteomic approach, based on the sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS), derived from exposure of Chlorella sorokiniana to 250 μM Cd 2 + for 40 h, showing the proteins that are up- or downregulated. The processing of data included the identification of the Chlamydomonas reinhardtii protein sequences equivalent to the corresponding of Chlorella sorokiniana sequences obtained, which made possible to use KEGG Database. MS and MS/MS information, and quantitative data were deposited PRIDE public repository under accession number PXD015932 .This work was supported in part by research grants from the European governments (IN- TERREG VA-POCTEP- 2014-2020; 0055_ALGARED_PLUS_5_E), the Operative FEDER Program- Andalucía 2014-2020 ( UHU-1257518 ) University of Huelva and by the European Regional De- velopment Fund through the Agencia Estatal de Investigación grants ( PID 2019-110438RB-C22 and PID 2019-109785 GB-100 )

    Optimized Cluster-Based Dynamic Energy-Aware Routing Protocol for Wireless Sensor Networks in Agriculture Precision

    Full text link
    [EN] Wireless sensor networks (WSNs) are becoming one of the demanding platforms, where sensor nodes are sensing and monitoring the physical or environmental conditions and transmit the data to the base station via multihop routing. Agriculture sector also adopted these networks to promote innovations for environmental friendly farming methods, lower the management cost, and achieve scientific cultivation. Due to limited capabilities, the sensor nodes have suffered with energy issues and complex routing processes and lead to data transmission failure and delay in the sensor-based agriculture fields. Due to these limitations, the sensor nodes near the base station are always relaying on it and cause extra burden on base station or going into useless state. To address these issues, this study proposes a Gateway Clustering Energy-Efficient Centroid- (GCEEC-) based routing protocol where cluster head is selected from the centroid position and gateway nodes are selected from each cluster. Gateway node reduces the data load from cluster head nodes and forwards the data towards the base station. Simulation has performed to evaluate the proposed protocol with state-of-the-art protocols. The experimental results indicated the better performance of proposed protocol and provide more feasible WSN-based monitoring for temperature, humidity, and illumination in agriculture sector.This work has also been partially supported by the European Union through the ERANETMED (Euromediterranean Cooperation through ERANET joint activities and beyond) project ERANETMED3-227 SMARTWATIR.Qureshi, KN.; Bashir, MU.; Lloret, J.; León Fernández, A. (2020). Optimized Cluster-Based Dynamic Energy-Aware Routing Protocol for Wireless Sensor Networks in Agriculture Precision. Journal of Sensors. 2020:1-19. https://doi.org/10.1155/2020/9040395S1192020Sneha, K., Kamath, R., Balachandra, M., & Prabhu, S. (2019). New Gossiping Protocol for Routing Data in Sensor Networks for Precision Agriculture. Soft Computing and Signal Processing, 139-152. doi:10.1007/978-981-13-3393-4_15Qureshi, K. N., Abdullah, A. H., Bashir, F., Iqbal, S., & Awan, K. M. (2018). Cluster-based data dissemination, cluster head formation under sparse, and dense traffic conditions for vehicular ad hoc networks. International Journal of Communication Systems, 31(8), e3533. doi:10.1002/dac.3533Rault, T., Bouabdallah, A., & Challal, Y. (2014). Energy efficiency in wireless sensor networks: A top-down survey. Computer Networks, 67, 104-122. doi:10.1016/j.comnet.2014.03.027Feng, X., Zhang, J., Ren, C., & Guan, T. (2018). An Unequal Clustering Algorithm Concerned With Time-Delay for Internet of Things. IEEE Access, 6, 33895-33909. doi:10.1109/access.2018.2847036Savaglio, C., Pace, P., Aloi, G., Liotta, A., & Fortino, G. (2019). Lightweight Reinforcement Learning for Energy Efficient Communications in Wireless Sensor Networks. IEEE Access, 7, 29355-29364. doi:10.1109/access.2019.2902371Srbinovska, M., Gavrovski, C., Dimcev, V., Krkoleva, A., & Borozan, V. (2015). Environmental parameters monitoring in precision agriculture using wireless sensor networks. Journal of Cleaner Production, 88, 297-307. doi:10.1016/j.jclepro.2014.04.036Lloret, J., Garcia, M., Bri, D., & Diaz, J. (2009). A Cluster-Based Architecture to Structure the Topology of Parallel Wireless Sensor Networks. Sensors, 9(12), 10513-10544. doi:10.3390/s91210513Qureshi, K. N., Din, S., Jeon, G., & Piccialli, F. (2020). Link quality and energy utilization based preferable next hop selection routing for wireless body area networks. Computer Communications, 149, 382-392. doi:10.1016/j.comcom.2019.10.030Kumar, S. A., & Ilango, P. (2017). The Impact of Wireless Sensor Network in the Field of Precision Agriculture: A Review. Wireless Personal Communications, 98(1), 685-698. doi:10.1007/s11277-017-4890-zAnisi, M. H., Abdul-Salaam, G., & Abdullah, A. H. (2014). A survey of wireless sensor network approaches and their energy consumption for monitoring farm fields in precision agriculture. Precision Agriculture, 16(2), 216-238. doi:10.1007/s11119-014-9371-8Long, D. S., & McCallum, J. D. (2015). On-combine, multi-sensor data collection for post-harvest assessment of environmental stress in wheat. Precision Agriculture, 16(5), 492-504. doi:10.1007/s11119-015-9391-zFu, X., Fortino, G., Li, W., Pace, P., & Yang, Y. (2019). WSNs-assisted opportunistic network for low-latency message forwarding in sparse settings. Future Generation Computer Systems, 91, 223-237. doi:10.1016/j.future.2018.08.031Mehmood, A., Khan, S., Shams, B., & Lloret, J. (2013). Energy-efficient multi-level and distance-aware clustering mechanism for WSNs. International Journal of Communication Systems, 28(5), 972-989. doi:10.1002/dac.2720Pantazis, N. A., Nikolidakis, S. A., & Vergados, D. D. (2013). Energy-Efficient Routing Protocols in Wireless Sensor Networks: A Survey. IEEE Communications Surveys & Tutorials, 15(2), 551-591. doi:10.1109/surv.2012.062612.00084De Farias, C. M., Pirmez, L., Fortino, G., & Guerrieri, A. (2019). A multi-sensor data fusion technique using data correlations among multiple applications. Future Generation Computer Systems, 92, 109-118. doi:10.1016/j.future.2018.09.034Rao, P. C. S., Jana, P. K., & Banka, H. (2016). A particle swarm optimization based energy efficient cluster head selection algorithm for wireless sensor networks. Wireless Networks, 23(7), 2005-2020. doi:10.1007/s11276-016-1270-7Fu, X., Fortino, G., Pace, P., Aloi, G., & Li, W. (2020). Environment-fusion multipath routing protocol for wireless sensor networks. Information Fusion, 53, 4-19. doi:10.1016/j.inffus.2019.06.001Liu, X. (2015). Atypical Hierarchical Routing Protocols for Wireless Sensor Networks: A Review. IEEE Sensors Journal, 15(10), 5372-5383. doi:10.1109/jsen.2015.2445796Jan, N., Javaid, N., Javaid, Q., Alrajeh, N., Alam, M., Khan, Z. A., & Niaz, I. A. (2017). A Balanced Energy-Consuming and Hole-Alleviating Algorithm for Wireless Sensor Networks. IEEE Access, 5, 6134-6150. doi:10.1109/access.2017.2676004Gupta, G. P., Misra, M., & Garg, K. (2014). Energy and trust aware mobile agent migration protocol for data aggregation in wireless sensor networks. Journal of Network and Computer Applications, 41, 300-311. doi:10.1016/j.jnca.2014.01.003Safa, H., Karam, M., & Moussa, B. (2014). PHAODV: Power aware heterogeneous routing protocol for MANETs. Journal of Network and Computer Applications, 46, 60-71. doi:10.1016/j.jnca.2014.07.035Liu, X. (2015). An Optimal-Distance-Based Transmission Strategy for Lifetime Maximization of Wireless Sensor Networks. IEEE Sensors Journal, 15(6), 3484-3491. doi:10.1109/jsen.2014.2372340Brar, G. S., Rani, S., Chopra, V., Malhotra, R., Song, H., & Ahmed, S. H. (2016). Energy Efficient Direction-Based PDORP Routing Protocol for WSN. IEEE Access, 4, 3182-3194. doi:10.1109/access.2016.2576475Abo-Zahhad, M., Ahmed, S. M., Sabor, N., & Sasaki, S. (2015). Mobile Sink-Based Adaptive Immune Energy-Efficient Clustering Protocol for Improving the Lifetime and Stability Period of Wireless Sensor Networks. IEEE Sensors Journal, 15(8), 4576-4586. doi:10.1109/jsen.2015.2424296Huynh, T.-T., Dinh-Duc, A.-V., & Tran, C.-H. (2016). Delay-constrained energy-efficient cluster-based multi-hop routing in wireless sensor networks. Journal of Communications and Networks, 18(4), 580-588. doi:10.1109/jcn.2016.000081Shen, J., Wang, A., Wang, C., Hung, P. C. K., & Lai, C.-F. (2017). An Efficient Centroid-Based Routing Protocol for Energy Management in WSN-Assisted IoT. IEEE Access, 5, 18469-18479. doi:10.1109/access.2017.2749606Awan, K. M., Shah, P. A., Iqbal, K., Gillani, S., Ahmad, W., & Nam, Y. (2019). Underwater Wireless Sensor Networks: A Review of Recent Issues and Challenges. Wireless Communications and Mobile Computing, 2019, 1-20. doi:10.1155/2019/6470359Sajwan, M., Gosain, D., & Sharma, A. K. (2018). CAMP: cluster aided multi-path routing protocol for wireless sensor networks. Wireless Networks, 25(5), 2603-2620. doi:10.1007/s11276-018-1689-0Varga, A. (2010). OMNeT++. Modeling and Tools for Network Simulation, 35-59. doi:10.1007/978-3-642-12331-3_3Lartillot, O., Toiviainen, P., & Eerola, T. (2008). A Matlab Toolbox for Music Information Retrieval. Studies in Classification, Data Analysis, and Knowledge Organization, 261-268. doi:10.1007/978-3-540-78246-9_31Mathur, P., Nielsen, R. H., Prasad, N. R., & Prasad, R. (2016). Data collection using miniature aerial vehicles in wireless sensor networks. IET Wireless Sensor Systems, 6(1), 17-25. doi:10.1049/iet-wss.2014.0120Zou, T., Lin, S., Feng, Q., & Chen, Y. (2016). Energy-Efficient Control with Harvesting Predictions for Solar-Powered Wireless Sensor Networks. Sensors, 16(1), 53. doi:10.3390/s16010053Song, Y., Ma, J., Zhang, X., & Feng, Y. (2012). Design of Wireless Sensor Network-Based Greenhouse Environment Monitoring and Automatic Control System. Journal of Networks, 7(5). doi:10.4304/jnw.7.5.838-844Nikolidakis, S., Kandris, D., Vergados, D., & Douligeris, C. (2013). Energy Efficient Routing in Wireless Sensor Networks Through Balanced Clustering. Algorithms, 6(1), 29-42. doi:10.3390/a6010029Ndzi, D. L., Harun, A., Ramli, F. M., Kamarudin, M. L., Zakaria, A., Shakaff, A. Y. M., … Farook, R. S. (2014). Wireless sensor network coverage measurement and planning in mixed crop farming. Computers and Electronics in Agriculture, 105, 83-94. doi:10.1016/j.compag.2014.04.01

    Impact of heavy metals in the microalga Chlorella sorokiniana and assessment of its potential use in cadmium bioremediation

    Get PDF
    The chlorophyte microalga Chlorella sorokiniana was tested for the bioremediation of heavy metals pollution. It was cultured with different concentrations of Cu2+, Cd2+, As (III) and As (V), showing a significant inhibition on its growth at concentrations of 500 µM Cu2+, 250 µM Cd2+, 750 µM AsO33- and 5 mM AsO43- or higher. Moreover, the consumption of ammonium was also studied, showing significant differences for concentrations higher than 1 mM of Cu2+ and As (III), and 5 mM of As (V). The determination of intracellular heavy metals concentration revealed that Chlorella sorokiniana is an outstanding Cd accumulator organism, able to accumulate 11,232 mg kg−1 of Cd, and removing 65% of initial concentration of this heavy metal. Finally, antioxidant enzymes, such as catalase (CAT) and ascorbate peroxidase (APX), and enzymes involved in the production of glutamate and cysteine, such as glutamine syntethase (GS), glutamate dehydrogenase (GDH), O-acetylserine (thiol) lyase (OASTL) and NAD-isocitrate dehydrogenase (NAD-IDH) were studied both at gene expression and enzymatic activity levels. These enzymes exhibited different grades of upregulation, especially in response to Cd and As stress. However, GS expression was downregulated when Chlorella sorokiniana was cultured in the presence of these heavy metals.This work was supported in part by research grants from the Euro- pean governments (INTERREG VAPOCTEP-2014-2020; 0055_ALGAR- ED_PLUS_5_E), the Operative FEDER Program-Andalucía 2014-2020, the University of Huelva (UHU-1257518), and by the European Regional Development Fund through the Agencia Estatal de Investigaci ́on grant (PID 2019-110438RB-C22
    corecore